Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Mol Ther Nucleic Acids ; 35(2): 102193, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38745855

ABSTRACT

Use of tumor-suppressive microRNAs (miRNAs) as anti-cancer agents is hindered by the lack of effective delivery vehicles, entrapment of the miRNA within endocytic compartments, and rapid degradation of miRNA by nucleases. To address these issues, we developed a miRNA delivery strategy that includes (1) a targeting ligand, (2) an endosomal escape agent, nigericin and (3) a chemically modified miRNA. The delivery ligand, DUPA (2-[3-(1,3-dicarboxy propyl) ureido] pentanedioic acid), was selected based on its specificity for prostate-specific membrane antigen (PSMA), a receptor routinely upregulated in prostate cancer-one of the leading causes of cancer death among men. DUPA was conjugated to the tumor suppressive miRNA, miR-34a (DUPA-miR-34a) based on the ability of miR-34a to inhibit prostate cancer cell proliferation. To mediate endosomal escape, nigericin was incorporated into the complex, resulting in DUPA-nigericin-miR-34a. Both DUPA-miR-34a and DUPA-nigericin-miR-34a specifically bound to, and were taken up by, PSMA-expressing cells in vitro and in vivo. And while both DUPA-miR-34a and DUPA-nigericin-miR-34a downregulated miR-34a target genes, only DUPA-nigericin-miR-34a decreased cell proliferation in vitro and delayed tumor growth in vivo. Tumor growth was further reduced using a fully modified version of miR-34a that has significantly increased stability.

2.
Bio Protoc ; 14(8): e4975, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38686344

ABSTRACT

The field of oligonucleotide therapeutics is rapidly advancing, particularly for combating orphan diseases and cancer. However, the intrinsic instability of oligonucleotides, especially RNA, poses a substantial challenge in the face of the harsh conditions encountered intracellularly and in circulation. Therefore, evaluating the stability of oligos in serum is of great significance when developing oligonucleotide therapeutics. This protocol outlines a dependable and reproducible method for preparing oligonucleotide duplexes, coupled with confirmation by gel electrophoresis. Subsequently, the protocol defines a mechanism to assess the stability of the oligo duplexes in serum. This protocol seeks to establish a standardized reference for researchers, enabling them to compare the impact of various modifications on oligo stability and assess the degradation kinetics effectively. Key features • Adaptable for use with small interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASOs), and other unmodified and modified oligonucleotides. • Does not necessitate any Biological Safety Level clearance and offers a rapid, cost-effective, and entirely in vitro procedure. • Allows researchers to evaluate multiple modification patterns that, when coupled with targeting activity, allow for selecting the best modification pattern prior to in vivo analysis.

3.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396800

ABSTRACT

Prostate cancer (PCa) remains a common cancer with high mortality in men due to its heterogeneity and the emergence of drug resistance. A critical factor contributing to its lethality is the presence of prostate cancer stem cells (PCSCs), which can self-renew, long-term propagate tumors, and mediate treatment resistance. MicroRNA-34a (miR-34a) has shown promise as an anti-PCSC therapeutic by targeting critical molecules involved in cancer stem cell (CSC) survival and functions. Despite extensive efforts, the development of miR-34a therapeutics still faces challenges, including non-specific delivery and delivery-associated toxicity. One emerging delivery approach is ligand-mediated conjugation, aiming to achieve specific delivery of miR-34a to cancer cells, thereby enhancing efficacy while minimizing toxicity. Folate-conjugated miR-34a (folate-miR-34a) has demonstrated promising anti-tumor efficacy in breast and lung cancers by targeting folate receptor α (FOLR1). Here, we first show that miR-34a, a TP53 transcriptional target, is reduced in PCa that harbors TP53 loss or mutations and that miR-34a mimic, when transfected into PCa cells, downregulated multiple miR-34a targets and inhibited cell growth. When exploring the therapeutic potential of folate-miR-34a, we found that folate-miR-34a exhibited impressive inhibitory effects on breast, ovarian, and cervical cancer cells but showed minimal effects on and targeted delivery to PCa cells due to a lack of appreciable expression of FOLR1 in PCa cells. Folate-miR-34a also did not display any apparent effect on PCa cells expressing prostate-specific membrane antigen (PMSA) despite the reported folate's binding capability to PSMA. These results highlight challenges in the specific delivery of folate-miR-34a to PCa due to a lack of target (receptor) expression. Our study offers novel insights into the challenges and promises within the field and casts light on the development of ligand-conjugated miR-34a therapeutics for PCa.


Subject(s)
Folic Acid , Lung Neoplasms , MicroRNAs , Prostatic Neoplasms , Humans , Male , Cell Line, Tumor , Cell Proliferation/genetics , Folate Receptor 1/genetics , Folate Receptor 1/metabolism , Folate Receptor 1/therapeutic use , Gene Expression Regulation, Neoplastic , Ligands , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , MicroRNAs/metabolism , MicroRNAs/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Folic Acid/pharmacology , Folic Acid/therapeutic use
4.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38045265

ABSTRACT

Prostate cancer (PCa) remains a common cancer with high mortality in men due to its heterogeneity and the emergence of drug resistance. A critical factor contributing to its lethality is the presence of prostate cancer stem cells (PCSCs), which can self-renew, long-term propagate tumors and mediate treatment resistance. MicroRNA-34a (miR-34a) has shown promise as an anti-PCSC therapeutic by targeting critical molecules involved in cancer stem cell (CSC) survival and functions. Despite extensive efforts, the development of miR-34a therapeutics still faces challenges, including non-specific delivery and delivery-associated toxicity. One emerging delivery approach is ligand-mediated conjugation, aiming to achieve specific delivery of miR-34a to cancer cells, thereby enhancing efficacy while minimizing toxicity. Folate-conjugated miR-34a (folate-miR-34a) has demonstrated promising anti-tumor efficacy in breast and lung cancers by targeting folate receptor α (FOLR1). Here, we first show that miR-34a, a TP53 transcriptional target, is reduced in PCa that harbors TP53 loss or mutations and that miR-34a mimic, when transfected into PCa cells, downregulated multiple miR-34a targets and inhibited cell growth. When exploring the therapeutic potential of folate-miR-34a, we found that folate-miR-34a exhibited impressive inhibitory effects on breast, ovarian and cervical cancer cells but showed minimal effects on and targeted delivery to PCa cells due to a lack of appreciable expression of FOLR1 in PCa cells. Folate-miR-34a also did not display any apparent effect on PCa cells expressing prostate-specific membrane antigen (PMSA) despite the reported folate's binding capability to PSMA. These results highlight challenges in specific delivery of folate-miR-34a to PCa due to lack of target (receptor) expression. Our study offers novel insights on the challenges and promises within the field and cast light on the development of ligand-conjugated miR-34a therapeutics for PCa.

5.
J Vis Exp ; (200)2023 10 06.
Article in English | MEDLINE | ID: mdl-37870313

ABSTRACT

Extracellular vesicles (EVs) are important mediators of cellular communication that are secreted by a variety of different cells. These EVs shuttle bioactive molecules, including proteins, lipids, and nucleic acids (DNA, mRNAs, microRNAs, and other noncoding RNAs), from one cell to another, leading to phenotypic consequences in the recipient cells. Of all the various EV cargo, microRNAs (miRNAs) have garnered a great deal of attention for their role in shaping the microenvironment and in educating recipient cells because of their clear dysregulation and abundance in EVs. Additional data indicates that many miRNAs are actively loaded into EVs. Despite this clear evidence, research on the dynamics of export and mechanisms of miRNA sorting is limited. Here, we provide a protocol using flow cytometry analysis of EV-miRNA that can be used to understand the dynamics of EV-miRNA loading and identify the machinery involved in miRNA export. In this protocol, miRNAs predetermined to be enriched in EVs and depleted from donor cells are conjugated to a fluorophore and transfected into the donor cells. The fluorescently tagged miRNAs are then verified for loading into EVs and depletion from cells using qRT-PCR. As both a transfection control and a tool for gating the transfected population of cells, a fluorescently labeled cellular RNA (cell-retained and EV-depleted) is included. Cells transfected with both the EV-miRNA and cell-retained-miRNA are evaluated for fluorescent signals over the course of 72 h. The fluorescence signal intensity specific for the EV-miRNAs diminishes rapidly compared to the cell-retained miRNA. Using this straightforward protocol, one could now assess the dynamics of miRNA loading and identify various factors responsible for loading miRNAs into EVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Flow Cytometry , Extracellular Vesicles/metabolism , Proteins/metabolism , Transfection
6.
Oncogene ; 42(40): 2985-2999, 2023 09.
Article in English | MEDLINE | ID: mdl-37666938

ABSTRACT

Altered by defects in p53, epigenetic silencing, and genomic loss, the microRNA miR-34a represents one of the most clinically relevant tumor-suppressive microRNAs. Without question, a striking number of patients with cancer would benefit from miR-34a replacement, if poor miR-34a stability, non-specific delivery, and delivery-associated toxicity could be overcome. Here, we highlight a fully modified version of miR-34a (FM-miR-34a) that overcomes these hurdles when conjugated to a synthetically simplistic ligand. FM-miR-34a is orders of magnitude more stable than a partially modified version, without compromising its activity, leading to stronger repression of a greater number of miR-34a targets. FM-miR-34a potently inhibited proliferation and invasion, and induced sustained downregulation of endogenous target genes for >120 h following in vivo delivery. In vivo targeting was achieved through conjugating FM-miR-34a to folate (FM-FolamiR-34a), which inhibited tumor growth leading to complete cures in some mice. These results have the ability to revitalize miR-34a as an anti-cancer agent, providing a strong rationale for clinical testing.


Subject(s)
MicroRNAs , Neoplasms , Humans , Animals , Mice , MicroRNAs/genetics , Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
7.
Front Genet ; 14: 1243395, 2023.
Article in English | MEDLINE | ID: mdl-37671044

ABSTRACT

Chromatin is a vital and dynamic structure that is carefully regulated to maintain proper cell homeostasis. A great deal of this regulation is dependent on histone proteins which have the ability to be dynamically modified on their tails via various post-translational modifications (PTMs). While multiple histone PTMs are studied and often work in concert to facilitate gene expression, here we focus on the tri-methylation of histone H4 on lysine 20 (H4K20me3) and its function in chromatin structure, cell cycle, DNA repair, and development. The recent studies evaluated in this review have shed light on how H4K20me3 is established and regulated by various interacting partners and how H4K20me3 and the proteins that interact with this PTM are involved in various diseases. Through analyzing the current literature on H4K20me3 function and regulation, we aim to summarize this knowledge and highlights gaps that remain in the field.

8.
Front Oncol ; 13: 1167717, 2023.
Article in English | MEDLINE | ID: mdl-37397375

ABSTRACT

Extracellular vesicles have undergone a paradigm shift from being considered as 'waste bags' to being central mediators of cell-to-cell signaling in homeostasis and several pathologies including cancer. Their ubiquitous nature, ability to cross biological barriers, and dynamic regulation during changes in pathophysiological state of an individual not only makes them excellent biomarkers but also critical mediators of cancer progression. This review highlights the heterogeneity in extracellular vesicles by discussing emerging subtypes, such as migrasomes, mitovesicles, and exophers, as well as evolving components of extracellular vesicles such as the surface protein corona. The review provides a comprehensive overview of our current understanding of the role of extracellular vesicles during different stages of cancer including cancer initiation, metabolic reprogramming, extracellular matrix remodeling, angiogenesis, immune modulation, therapy resistance, and metastasis, and highlights gaps in our current knowledge of extracellular vesicle biology in cancer. We further provide a perspective on extracellular vesicle-based cancer therapeutics and challenges associated with bringing them to the clinic.

9.
Bio Protoc ; 12(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36199701

ABSTRACT

The in-cell western (ICW) is an immunocytochemical technique that has been used to screen for effects of siRNAs, drugs, and small molecule inhibitors. The reduced time and number of cells required to follow this protocol illustrates its semi-high-throughput nature. Performing a successful ICW protocol requires fixing and permeabilizing adherent cells directly in the plate that specifically exposes the epitope of interest. After blocking of non-specific proteins, the cells are incubated overnight with a primary antibody of interest, which is detected via a host-specific near-infrared fluorescently labeled LI-COR secondary antibody. In the final step, the plate is scanned using an Odyssey LI-COR Imaging System or similar, and each of the wells is quantified. For the first time, this technique has been demonstrated to be reproducibly utilized for semi-high-throughput selection of knockout or overexpression clones. Graphical abstract.

11.
Cancer Res ; 82(8): 1534-1547, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35404406

ABSTRACT

EGFR inhibitors (EGFRi) are standard-of-care treatments administered to patients with non-small cell lung cancer (NSCLC) that harbor EGFR alterations. However, development of resistance posttreatment remains a major challenge. Multiple mechanisms can promote survival of EGFRi-treated NSCLC cells, including secondary mutations in EGFR and activation of bypass tracks that circumvent the requirement for EGFR signaling. Nevertheless, the mechanisms involved in bypass signaling activation are understudied and require further elucidation. In this study, we identify that loss of an epigenetic factor, lysine methyltransferase 5C (KMT5C), drives resistance of NSCLC to multiple EGFRis, including erlotinib, gefitinib, afatinib, and osimertinib. KMT5C catalyzed trimethylation of histone H4 lysine 20 (H4K20), a modification required for gene repression and maintenance of heterochromatin. Loss of KMT5C led to upregulation of an oncogenic long noncoding RNA, LINC01510, that promoted transcription of the oncogene MET, a component of a major bypass mechanism involved in EGFRi resistance. These findings underscore the loss of KMT5C as a critical event in driving EGFRi resistance by promoting a LINC01510/MET axis, providing mechanistic insights that could help improve NSCLC treatment. SIGNIFICANCE: Dysregulation of the epigenetic modifier KMT5C can drive MET-mediated EGFRi resistance, implicating KMT5C loss as a putative biomarker of resistance and H4K20 methylation as a potential target in EGFRi-resistant lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Histone-Lysine N-Methyltransferase , Lung Neoplasms , Proto-Oncogene Proteins c-met , RNA, Long Noncoding , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Histone-Lysine N-Methyltransferase/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lysine/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/genetics , RNA, Long Noncoding/genetics , Up-Regulation
13.
Sci Rep ; 12(1): 972, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35046472

ABSTRACT

Extracellular vesicles (EVs) released from non-small cell lung cancer (NSCLC) cells are known to promote cancer progression. However, it remains unclear how EVs from various NSCLC cells differ in their secretion profile and their ability to promote phenotypic changes in non-tumorigenic cells. Here, we performed a comparative analysis of EV release from non-tumorigenic cells (HBEC/BEAS-2B) and several NSCLC cell lines (A549, H460, H358, SKMES, and Calu6) and evaluated the potential impact of NSCLC EVs, including EV-encapsulated RNA (EV-RNA), in driving invasion and epithelial barrier impairment in HBEC/BEAS-2B cells. Secretion analysis revealed that cancer cells vary in their secretion level, with some cell lines having relatively low secretion rates. Differential uptake of NSCLC EVs was also observed, with uptake of A549 and SKMES EVs being the highest. Phenotypically, EVs derived from Calu6 and H358 cells significantly enhanced invasion, disrupted an epithelial barrier, and increased barrier permeability through downregulation of E-cadherin and ZO-1. EV-RNA was a key contributing factor in mediating these phenotypes. More nuanced analysis suggests a potential correlation between the aggressiveness of NSCLC subtypes and the ability of their respective EVs to induce cancerous phenotypes.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Cell Transformation, Neoplastic , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Humans , Lung Neoplasms/pathology , Neoplasm Invasiveness , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
14.
NAR Cancer ; 3(3): zcab030, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34316717

ABSTRACT

RNA interference (RNAi)-based therapeutics (miRNAs, siRNAs) have great potential for treating various human diseases through their ability to downregulate proteins associated with disease progression. However, the development of RNAi-based therapeutics is limited by lack of safe and specific delivery strategies. A great effort has been made to overcome some of these challenges resulting in development of N-acetylgalactosamine (GalNAc) ligands that are being used for delivery of siRNAs for the treatment of diseases that affect the liver. The successes achieved using GalNAc-siRNAs have paved the way for developing RNAi-based delivery strategies that can target extrahepatic diseases including cancer. This includes targeting survival signals directly in the cancer cells and indirectly through targeting cancer-associated immunosuppressive cells. To achieve targeting specificity, RNAi molecules are being directly conjugated to a targeting ligand or being packaged into a delivery vehicle engineered to overexpress a targeting ligand on its surface. In both cases, the ligand binds to a cell surface receptor that is highly upregulated by the target cells, while not expressed, or expressed at low levels on normal cells. In this review, we summarize the most recent RNAi delivery strategies, including extracellular vesicles, that use a ligand-mediated approach for targeting various oncological diseases.

15.
Front Cell Dev Biol ; 9: 640587, 2021.
Article in English | MEDLINE | ID: mdl-33763422

ABSTRACT

Overwhelming evidence indicates that virtually all treatment-naive tumors contain a subpopulation of cancer cells that possess some stem cell traits and properties and are operationally defined as cancer cell stem cells (CSCs). CSCs manifest inherent heterogeneity in that they may exist in an epithelial and proliferative state or a mesenchymal non-proliferative and invasive state. Spontaneous tumor progression, therapeutic treatments, and (epi)genetic mutations may also induce plasticity in non-CSCs and reprogram them into stem-like cancer cells. Intrinsic cancer cell heterogeneity and induced cancer cell plasticity, constantly and dynamically, generate a pool of CSC subpopulations with varying levels of epigenomic stability and stemness. Despite the dynamic and transient nature of CSCs, they play fundamental roles in mediating therapy resistance and tumor relapse. It is now clear that the stemness of CSCs is coordinately regulated by genetic factors and epigenetic mechanisms. Here, in this perspective, we first provide a brief updated overview of CSCs. We then focus on microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA) devoid in many CSCs and advanced tumors. Being a member of the miR-34 family, miR-34a was identified as a p53 target in 2007. It is a bona fide tumor suppressor, and its expression is dysregulated and downregulated in various human cancers. By targeting stemness factors such as NOTCH, MYC, BCL-2, and CD44, miR-34a epigenetically and negatively regulates the functional properties of CSCs. We shall briefly discuss potential reasons behind the failure of the first-in-class clinical trial of MRX34, a liposomal miR-34a mimic. Finally, we offer several clinical settings where miR-34a can potentially be deployed to therapeutically target CSCs and advanced, therapy-resistant, and p53-mutant tumors in order to overcome therapy resistance and curb tumor relapse.

16.
Vet Pathol ; 58(1): 34-41, 2021 01.
Article in English | MEDLINE | ID: mdl-33287683

ABSTRACT

Lymphoma is among the most common cancer in dogs. Diffuse large B-cell lymphoma (DLBCL) is the predominant type, accounting for up to half of all cases. Definitive diagnosis of DLBCL relies on cytologic evaluation with immunophenotyping, or histopathology and immunohistochemistry when needed. A rapid and specific molecular test aiding in the diagnosis could be beneficial. Noncoding microRNAs (miRNAs) are regulators of gene expression involved in a variety of cellular processes, including cell differentiation, cell cycle progression, and apoptosis. Not surprisingly, miRNA expression is aberrant in diseases such as cancers. Their high stability and abundance in tissues make them promising biomarkers for diagnosing and monitoring diseases. This study aimed to identify miRNA signatures of DLBCL to develop ancillary molecular diagnostic tools. miRNA was isolated from formalin-fixed, paraffin-embedded lymph node tissue from 22 DLBCL and 14 nonneoplastic controls. Relative gene expression of 8 tumor-regulating miRNAs was achieved by RT-qPCR (reverse transcriptase quantitative polymerase chain reaction). The results showed downregulation of the let-7 family of miRNAs and miR-155, whereas miR-34a was upregulated in DLBCL compared to the controls. We demonstrated that the combination of expression levels of miR-34a and let-7f or of let-7b and let-7f achieved 100% differentiation between DLBCL and controls. Furthermore, let-7f alone discriminated DLBCL from nonneoplastic tissue in 97% of cases. Our results represent one step forward in search of a rapid and accurate ancillary diagnostic test for DLBCL in dogs.


Subject(s)
Dog Diseases , Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Animals , Biomarkers, Tumor/genetics , Dog Diseases/diagnosis , Dog Diseases/genetics , Dogs , Gene Expression Profiling/veterinary , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/veterinary , MicroRNAs/genetics
17.
Trends Cancer ; 6(12): 1002-1017, 2020 12.
Article in English | MEDLINE | ID: mdl-32828714

ABSTRACT

Pinpointing the underlying mechanisms that drive tumorigenesis in human patients is a prerequisite for identifying suitable therapeutic targets for precision medicine. In contrast to cell culture systems, mouse models are highly favored for evaluating tumor progression and therapeutic response in a more realistic in vivo context. The past decade has witnessed a dramatic increase in the number of functional genomic studies using diverse mouse models, including in vivo clustered regularly interspaced short palindromic repeats (CRISPR) and RNA interference (RNAi) screens, and these have provided a wealth of knowledge addressing multiple essential questions in translational cancer research. We compare the multiple mouse systems and genomic tools that are commonly used for in vivo screens to illustrate their strengths and limitations. Crucial components of screen design and data analysis are also discussed.


Subject(s)
Biomarkers, Tumor/genetics , Genomics/methods , High-Throughput Screening Assays/methods , Neoplasms/genetics , Precision Medicine/methods , Animals , Biomarkers, Tumor/antagonists & inhibitors , CRISPR-Cas Systems/genetics , Cell Line, Tumor , DNA Transposable Elements/genetics , Disease Models, Animal , Gene Editing/methods , Humans , Mice , Mice, Transgenic , Molecular Targeted Therapy/methods , Neoplasms/therapy , RNA, Guide, Kinetoplastida/genetics , Xenograft Model Antitumor Assays
18.
Oncotarget ; 10(57): 5892-5893, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31666921
19.
Cell Cycle ; 18(15): 1798-1811, 2019 08.
Article in English | MEDLINE | ID: mdl-31258013

ABSTRACT

Efforts to search for better treatment options for cancer have been a priority, and due to these efforts, new alternative therapies have emerged. For instance, clinically relevant tumor-suppressive microRNAs that target key oncogenic drivers have been identified as potential anti-cancer therapeutics. MicroRNAs are small non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. Aberrant microRNA expression, through misexpression of microRNA target genes, can have profound cellular effects leading to a variety of diseases, including cancer. While altered microRNA expression contributes to a cancerous state, restoration of microRNA expression has therapeutic benefits. For example, ectopic expression of microRNA-34a (miR-34a), a tumor suppressor gene that is a direct transcriptional target of p53 and thus is reduced in p53 mutant tumors, has clear effects on cell proliferation and survival in murine models of cancer. MicroRNA replacement therapies have recently been tested in combination with other agents, including other microRNAs, to simultaneously target multiple pathways to improve the therapeutic response. Thus, we reasoned that other microRNA combinations could collaborate to further improve treatment. To test this hypothesis miR-34a was used in an unbiased cell-based approach to identify combinatorial microRNA pairs with enhanced efficacy over miR-34a alone. This approach identified a subset of microRNAs that was able to enhance the miR-34a antiproliferative activity. These microRNA combinatorial therapeutics could offer superior tumor-suppressive abilities to suppress oncogenic properties compared to a monotherapeutic approach. Collectively these studies aim to address an unmet need of identifying, characterizing, and therapeutically targeting microRNAs for the treatment of cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Computational Biology , High-Throughput Screening Assays , Humans , MicroRNAs/genetics
20.
Mol Ther Nucleic Acids ; 16: 505-518, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31071527

ABSTRACT

The therapeutic promise of small-RNA therapeutics is limited, not only by the lack of delivery vehicles, but also by the inability of the small RNAs to reach intracellular compartments where they can be biologically active. We previously reported successful delivery of functionally active miRNAs via receptor-mediated endocytosis. This type of targeted therapy still faces a major challenge in the delivery field: endosomal sequestration. Here, a new method has been developed to promote endosomal escape of delivered miRNA. The strategy relies on the difference in solute contents between nascent endosomes and the cytoplasm; early endosomes are rich in sodium ions, whereas the intracellular fluid is rich is potassium ions. Exploiting this difference through favoring the influx of potassium into the endosomes without the exchange of osmotically active sodium, results in an osmotic differential leading to the endosomes swelling and bursting. One molecule that is able to exchange potassium for an osmotically inactive hydrogen ion is the ionophore nigericin. Through generating an intramolecular miRNA delivery vehicle, containing a ligand, in this case folate and nigericin, we enabled the escape of folate-RNA conjugates from their entrapping endosomes into the cytoplasm where they bound the RNA-induced silencing complex and activated the RNAi response.

SELECTION OF CITATIONS
SEARCH DETAIL
...